
AQA Chemistry - Quantitative Chemistry Unit 4.3 (Higher)

	•	•	0 ,
Mass of the	_ must always equal	. the	mass
Balance the following:			

Complete	the	following	sentence
Complete	LILE	TOLLOWING	Settlettle.

The relative formula mass is the (_____) of a compound.

It is the sum of the _____ atomic masses $(A_{\mbox{\tiny r}})$ of the atoms.

Calculate the relative formula mass for the following. Show your working out.

 A_{r} of C = 12 A_{r} of H = 1 A_{r} of O = 16 A_{r} of N = 14

Example:

CO₂
12 + (16 × 2)
12 + 32
= 44

H₂0

CH₄

 NH_4NO_3

When a gas is produced during a reaction, why might the mass go down?

Write the equation for when magnesium reacts with oxygen.

What happens to the mass of the product from the question above?

Use the A_r values below to calculate the molar mass of these elements. Don't forget the units.

E.g. A_r of sodium = 23, one mole = 23g

 A_r of K = 39

 A_r of F = 19

 A_r of O = 16

 A_r of Mg = 24

potassium

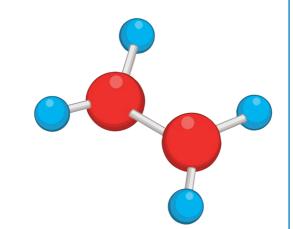
fluorine (Fl₂)

oxygen (O₂)

magnesium

% mass = $\frac{A_r \times \text{number of atoms} \times 100}{M_r \text{ of the compound}}$

Using the equation above, calculate the % mass of sodium (Na) in NaCl.


 A_r of Na = 23

 A_r of Cl = 35.5

What is the equation to calculate the number of moles for a pure substance.

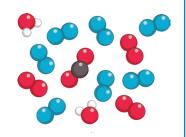
moles = _____

Rearrange the equation to calculate the mass.

What unit are chemical amounts measured in?

1. cm

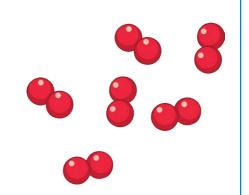
2. m/s


3. moles

Avogadro's constant is...

1. 6.03 × 10²³ per mole

2. 6.02×10^{23} per mole


3. 6.05×10^{23} per mole

What mass of nitrogen is in 92g of NO₂?

 A_r of N = 14

 A_r of O = 16

AQA Chemistry - Quantitative Chemistry Unit 4.3 (Higher)			
Using the equation	concentration (gm/dm³) = mass of solute	Why, in some reactions, are the reactants in excess?	Convert the following measurements in cm³ to dm³.
Na ₂ CO ₃ + 2HCl \longrightarrow 2NaCl + H ₂ O + CO ₂	volume		1. 15cm ³
What mass of NaCl would be produced from 2.5 grams of sodium carbonate?	Using the equation above, calculate the following:		2. 60cm ³
A _r of Na = 23	The mass of a solute is 60g and the volume is 0.5dm ³ , what is the concentration?		3. 90cm ³
A _r of H = 1			4. 0.5cm ³
A _r of Cl = 35.5			
A _r of O = 16			
A_r of $C = 12$			
		Define concentration.	
		——————————————————————————————————————	
	Rearrange the following equation to find volume.		
	concentration (mol/dm³) = mass of solute volume		I understand the following topic:
What is the mass of solute when the concentration of a solution is 4mol/dm³ and the volume is 600cm³?		Draw a diagram to show a solution with a low concentration and a solution with a high concentration	
a solution is 4molyani and the volume is obtain :			
			I need to work on the following topic:

Mass of the **product** must always equal the mass of the reactants.

Balance the following:

$$2H_{2} + 0_{2} \longrightarrow 2H_{2}0$$

$$2Na + Cl_{2} \longrightarrow 2NaCl$$

$$Br_{2} + 2KI \longrightarrow I_{2} + 2KBr$$

$$N_{2} + 3H_{2} \longrightarrow 2NH_{3}$$

Complete the following sentences

The relative formula mass is the (M_r) of a compound.

It is the sum of the **relative** atomic masses (A_r) of the atoms.

Calculate the relative formula mass for the following. Show your working out.

When a gas is produced during a reaction, why might the mass go down?

The gas may be released into the environment.

Write the equation for when magnesium reacts with oxygen.

$$2Mg + O_2 \longrightarrow 2MgO$$

What happens to the mass of the product from the question above?

The mass increases because oxygen is added from the environment.

Use the A_r values below to calculate the molar mass of these elements. Don't forget the units.

$$A_{r}$$
 of $K = 39$

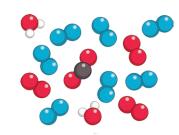

$$A_{r} \text{ of } F = 19$$

$$A_r$$
 of $O = 16$

$$A_r$$
 of Mg = 24

What is the equation to calculate the number of moles for a pure substance.

Rearrange the equation to calculate the mass.



What unit are chemical amounts measured in?

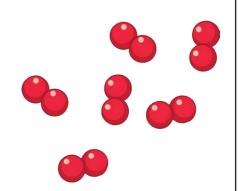
- 1. cm
- 2. m/s
- 3. moles

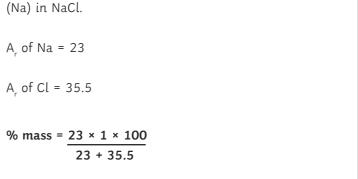
Avogadro's constant is...

- 1. 6.03 × 10²³ per mole
- 2. 6.02 × 10²³ per mole
- 3. 6.05×10^{23} per mole

What mass of nitrogen is in 92g of NO₂?

 A_{a} of N = 14


A of O = 16

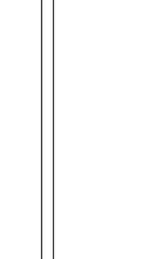

 $M_{.} = 14 + (16 \times 2) = 46$

N = 14

 $\frac{14}{11} = 0.304$

 $0.304 \times 92 = 28g$

Using the equation above, calculate the % mass of sodium


% mass = $A_z \times number of atoms \times 100$

= 2300

58.5

= 39.3% (to 1d.p.)

M_z of the compound

Secondary

AQA Chemistry - Quantitative Chemistry Unit 4.3 (Higher) Answers

Using the equation

 $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$

What mass of NaCl would be produced from 2.5 grams of sodium carbonate?

 A_r of Na = 23

 A_r of H = 1

 A_{r} of Cl = 35.5

 A_r of O = 16

 A_r of C = 12

 M_r of NaCl = 58.5 M_r of Na₂CO₃ = 106

 $\frac{2.5}{106}$ = 0.0236 moles (to 3 significant figures)

 $0.0236 \times 2 = 0.0472$ (1:2 ratio)

 $0.0472 \times 58.5 = 2.76$ grams of NaCl

What is the mass of solute when the concentration of a solution is 4mol/dm³ and the volume is 600cm³?

Convert 600cm³ to dm³ = 0.6dm³

mass = concentration × volume

 $4 \times 0.6 \text{dm}^3 = 2.4 \text{g}$

concentration (gm/dm 3) = $\frac{\text{mass of solute}}{\text{volume}}$

Using the equation above, calculate the following:

The mass of a solute is 60g and the volume is 0.5dm³, what is the concentration?

Concentration = $\frac{60}{0.5}$

= 120g/dm³

Rearrange the following equation to find volume.

concentration (mol/dm 3) = $\frac{\text{mass of solute}}{\text{volume}}$

 $\frac{\text{volume = } \frac{\text{mass of solute}}{\text{concentration}}$

Why, in some reactions, are the reactants in excess?

To make sure that the reaction has completely finished and the other reactant has been completely used up.

Convert the following measurements in cm^3 to dm^3 .

1. 15cm³

2. 60cm³

3. 90cm³

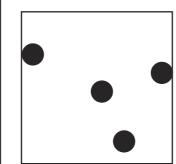
4. 0.5cm³

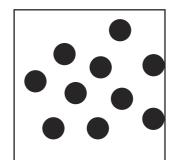
Divide by 1000

1. **0.015dm³**

2. **0.06dm³**

3. **0.09dm³**


4. 0.0005dm³


\n

Define concentration.

The amount of a substance in a certain volume of a solution is called its concentration.

Draw a diagram to show a solution with a low concentration and a solution with a high concentration

uniuc. o	tand the	rollowir	ig topic:		
_			_		
need to	work on	the fol	lowing t	opic:	
need to	work on	the fol	lowing t	copic:	
need to	work on	the fol	lowing t	opic:	
need to	work on	the fol	lowing t	copic:	
need to	work on	the fol	lowing t	opic:	
need to	work on	the fol	lowing t	copic:	
need to	work on	the fol	lowing t	opic:	
need to	work on	the fol	lowing t	opic:	
need to	work on	the fol	lowing t	opic:	
need to	work on	the fol	lowing t	opic:	

