AQA Physics Combined Science Unit 5: Forces Higher

Explain the difference b	between a vector and	a scalar quantity.	State the equation that can be used to determine the weight of an object.		
Place a tick in the corr are vector or scalar qu	rect column to show w antities.	hether the following	Calculate the weight of an object on the moon if its mass is 3kg. The gravitational field strength on the moon is 1.6N/kg.		
Quantity	Vector	Scalar			
Force				Students place its extension. 7	ed mas They co
Speed					
Distance			Explain the effect on an object's weight if its mass was doubled.	Force (N)	0
Velocity				Length of Spring (cm)	3
Displacement			Calculate the resultant forces acting on the van below.	Extension (cm)	0
Forces can be contact of each one. Contact: Non-contact:	or non-contact. Provid	e two examples for b	1000 N 600 N 600 N 1000 N 800 N	Plot a force/ex to include a lir	tension ne of b
Explain the difference b	between mass and we	aht. c	Horizontal force:		
Mass:		<u> </u>	Vertical force:		
Weight:			On a force diagram, what two things do the arrows show?		
Unit of mass:					
Unit of weight:			Complete the sentences below.		
Name the apparatus used to determine an objects weight.			Elastic deformation occurs when a force has been applied to a spring and it to its original shape	Mark the limit State the equa	of pro tion th.
			original shape.		

(1) g

sses, one at a time, on a spring and measured ollected the following results.

1	2	3	4	5
5	7	9	11	17
2	4	6	8	14

n graph for the data shown above. Remember best fit.

portionality on your graph.

nat links force, spring constant and extension.

AQA Physics Combined Science Unit 5: Forces Higher

Define work done.	a The graph below is a distance/	Let the mass of a car be 1500kg. One car is travelling at a speed of 20m/s and a second car is	Explain the term conservation of momentum.
State the equation that links work done, force a distance.	time graph of a person travelling from home to the supermarket and home	travelling at 15m/s. Calculate the forces exerted if they were to hit an object.	State the equation and the units used to calcomomentum.
Write the units for	- again. again. c c c c c c c c	Describe an experiment to determine whether your	A car has a mass of 1500kg and a momentur 7500kgm/s. Calculate its velocity.
force:	Where on the graph is the person stationary?	reaction time is faster with your right or left hand.	
A lorry travels 200m when the brakes are applied wi a force of 600N. Calculate the work done to stop t	Between points A and E, where is the speed the fastest? Explain you answer.		State the equation that links force, mass and acceleration.
lorry.	A car increases its velocity from 5m/s to 12m/s in a time of 10 seconds. Calculate its acceleration.		Rearrange the equation you have given above calculate acceleration.
Calculate the force if 3000J of energy is required move a box of books a distance of 150cm.	Remember to include all units.		Calculate the force acting on an object with a of 15kg and acceleration of 4m/s2.
	Explain the term deceleration.		Calculate the mass of an object, if it has a for 2000N and its acceleration is 50m/s2.
Draw lines to match the methods of transportation with their average speeds.	b	Describe the effect of friction on a moving object.	
car 1.5m/s walking 55m/s	minutes. How far has it travelled in that time?	State two ways in which friction on a moving object can be overcome.	When an object moves in a circular motion, e
train 3m/s	Stopping distance is calculated by adding thinking	2	what happens to its direction and velocity if i remains constant.
running 25m/s State three factors that could affect a person's	Thinking distance is affected by: s; r t	What is terminal velocity?	
1.	 Braking distance is affected by: t; 	Terminal velocity depends on two things:	
3	r conditions.		

ulate

2

j

k

m of

to

mass

rce of

explain (I its speed

AQA Physics Combined Scient	ce Unit 5: Forces Higher A	nswers								(1
Explain the difference between a vector and a scalar quantity. A vector quantity has a magnitude and a direction whereas a scalar quantity only has a magnitude.			State the equation that can be used to determine the weight of d an object. weight = mass × gravitational field strength							
Place a tick in the corre are vector or scalar que	ect column to show w antities.	hether the following	Calculate the weight of an object on the moon if its mass is 3kg. The gravitational field strength on the moon is 1.6N/kg.							
Quantity	Vector	Scalar	weight = 3×1.6 = $4.8N$							
Force	\checkmark			Students placed	l masses	, one at	a time, followin	on a spr	ing and	measured
Speed		\checkmark	Explain the effect on an object's weight if its mass was doubled.							·
Distance		✓	The weight would also be doubled.	Force (N)	0	1	2	3	4	5
Velocity	✓ ✓			Length of Spring (cm)	3	5	7	9	11	17
Displacement	✓		Calculate the resultant forces acting on the van below.	Extension (cm)	0	2	4	6	8	14
Forces can be contact of each one. Contact: friction, air resistance, Non-contact: magnetic, gravitationa Explain the difference be Mass: the amount of st Weight: the force actin	or non-contact. Provid , tension, normal al, electrostatic petween mass and wei tuff in an object. ag on an object due to	e two examples for b ght. gravity.	1000 N $600 \text{ N} \iff 600 \text{ N} \iff 800 \text{ N}$ $000 \text{ N} \iff 1000 \text{ N}$ 000 N 000 N Horizontal force: 800 - 600 = 200N Vertical force: 1000 - 1000 = 0N On a force diagram, what two things do the arrows show?	Plot a force/ext to include a lin	ension g e of best	raph for fit. 14 13 12 11 10 9 8 7 6 5 4 3		a shown	above. R	'emember
Unit of mass: kg			Direction of force and relative size.		-					
Name the apparatus used to determine an objects weight. newton meter			Complete the sentences below. Elastic deformation occurs when a force has been applied to a spring and it returns to its original shape. Inelastic deformation occurs when the spring does not return to its original shape.	Mark the limit State the equat force = spring o	of propo ion that constant	rtionality links for × exten s	1 4 1 on you ce, sprin sion	r graph. g consta	nt and e	xtension.

(1)

Define work done. This occurs when a force moves an object for a	The graph below is a distance/	Let the mass of a car be 1500kg. One car is travelling at a speed of 20m/s and a second car is travelling at 15m/s. Calculate the forces evented if
State the equation that links work done, force and distance. work done = force × distance	person travelling	they were to hit an object. force = mass × acceleration 20 × 1500 15 × 1500 30 000N 22 500N
Write the units for work done: joules	A 0 0 2 4 6 8 10 12 14 16 18 20 F Time (hours)	Describe an experiment to determine whether your
distance: metres	Where on the graph is the person stationary? B-C and D-E	reaction time is faster with your right or left hand. Work with a partner. Person A places their forearm on the table so that
A lorry travels 200m when the brakes are applied with a force of 600N. Calculate the work done to stop the lorry. work done = force × distance = 600 × 200 = 120 000J Calculate the force if 3000J of energy is required to move a box of books a distance of 150cm. Convert cm to m: 150cm = 1.5m Rearrange formula: force = work done ÷ distance = 3000 ÷ 1.5	Between points A and E, where is the speed the fastest? Explain you answer. C-D because it is the steepest part of the graph. A car increases its velocity from 5m/s to 12m/s in a time of 10 seconds. Calculate its acceleration. Remember to include all units. acceleration = change in velocity ÷ time = $(12 - 5) \div 10$ = $7 \div 10$ 0.7m/s	their right hand is hanging over the edge of the table. Person B places a ruler vertically between Person A's thumb and first finger, with the Ocm end of the ruler pointing downwards. The thumb and first finger should be as far apart as possible. Person B should place the Ocm mark level with the top of Person A's thumb and drop the ruler without telling them. Person A catches the ruler as quickly as possible. Reading from the top of the thumb, record how many cms it took to catch.
= 2000N	Explain the term deceleration. Negative acceleration, when something is slowing	Repeat experiment with the left hand.
Draw lines to match the methods of transportation with their average speeds.	 down. A coach travels at an average speed of 30mph for 20 minutes. How far has it travelled in that time? 10 miles 	Describe the effect of friction on a moving object. It slows it down. State two ways in which friction on a moving object can be overcome. Using a lubricant
train 3m/s running 25m/s	Stopping distance is calculated by adding thinking e distance and braking distance. Thinking distance is affected by:	Make the object more streamlined. Smoother surfaces.
State three factors that could affect a person's walking speed.	speed; reaction time.	What is terminal velocity? When an object is falling at a steady speed.
 age fitness terrain 	Braking distance is affected by: t yres ; r oad conditions.	Terminal velocity depends on two things: shape area


```
(2)
                                                 (j
Explain the term conservation of momentum.
The momentum before an event is equal to the
momentum after the event.
State the equation and the units used to calculate
momentum.
momentum (kgm/s) = mass (kg) × velocity (m/s)
A car has a mass of 1500kg and a momentum of
7500kgm/s. Calculate its velocity.
Rearrange formula:
7500 ÷ 1500 = 5m/s
                                                  k
State the equation that links force, mass and
acceleration.
force = mass × acceleration
Rearrange the equation you have given above to
calculate acceleration.
acceleration = force ÷ mass
Calculate the force acting on an object with a mass
of 15kg and acceleration of 4m/s2.
F = ma
15 × 4
```

```
60N
```

Calculate the mass of an object, if it has a force of 2000N and its acceleration is 50m/s2.

```
mass = force ÷ acceleration
= 2000 ÷ 50
= 40kg
```

When an object moves in a circular motion, explain what happens to its direction and velocity if its speed remains constant.

Its direction and velocity will be continually changing.

